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By Eugene-E. Lundquist
SUMMARY

The relations between load on the structure and rota-—
tion of a Joint can be used to estimate the lowest critvi-
cal load after the eguation for neutral stability has been
tested for three assumed eritical loads, each of which 1is
legs than the lowest critical load.

The solutions of six simple problems are included %o
iliustrate the application of the method of estimating
critical loads and to reveal certaln characteristics of
the method that should be known by the practical englneer
using it., PFour of these problems are concerned with mem-
bers that lie in the elastic, or long~column, range. The
other %two problems are concerned with members that lie in
the short-column range.

INTRODUGTION

One of the problems in the deslign of structures is to
make certaln that the compression members are stable un-
der the loads to be carried. For structures duilt with
the members joined to each other by frictionless pins, the
usual column formulas can be directly applied to the de~
sign of the compression members. For structures dbuilt
with the members continuous at the joints, however, the de-
sign of any one member is dependent upon the design of all
other members,

Reference 1 shows how the principles of the Cross
method of moment distribution can be used to check the
stability of structurel members under axial load and hence
the safety of the design, In this method, the critical
load for the system of members i1s calculated and compared
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with the applied load, If the critical load is greater
than the applied load, the members are stable. If the
eritical load is less than the applied load, the system 1s
unstable-and a larger size for one or more of the compres-
sion members must be selected.

One disedvantage of any method of calculatlng the crit-
ical load for a gystem of structural members under axial
load is that, for each type of instability, there is a cor-
responding eritical load. In design, the lowest critical
load is the only one of interest. When the stability of =
group of structural members is checked, it is therefore the
loweet of thege critical loads that must be calculated and
compared with the applled loads.

Although the two esquations for neutral stabllity given
in reference 1 are algebraic in appearance, they are fun—
damentally transcendental in character with the unknown
critical load entering in angles. The method of solution
used in reference 1 was to assume several values of the
critical load and to test one of the equations for neuntral
stability. If the first load in the series of assumed
loads is made sufficiently small, the lowest assumed load
$hat just satisfies this equation is the critical load de-~
sired. ‘ '

Unless the designer is fortunate in selecting the as-
sumed critical loads, considerable time and labor are re-
guired to find the lowest critical load. In order to make
the theory of reference 1 more useful in practical calcula-
tions, a method of estimating the lowsest critical load 1s
pregsented in this report.

In thie paper, as in reference 1, it is assumed that
the members lis in a plane and that buckling occurs in this
plane, It is further assumed that the joints of the struc~
ture are held rigidly in space but are free to rotate un-
der the elastic restraint of the interconnecting members.

DEFINITIONS AND SYMBOLS

The following definitions of stiffness and carry-over
factor are the same as those given in references 1 and 2.
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Stiffness

If a member is on unyielding supports at each end,
the moment at one end necessary to produce a rotation of
one~fourth radian of that end is called the "stiffness."
The stiffness of a member will depend upon the amount of
restraint at the far end. In the derivation of the crite-~
rion for stablility as given in reference 1, three types of
restraint at the far end are considered. The symbols used
to desiznate the stiffness for the different types of re-
straint are:

S, far end fixed.
St, far end elastically restralned.

8", far end pinned.

The stiffness of & member computed according to the
foregoing definition is one-~fourth that computed accord-
ing to0 the definition given in references 3 and 4. In the
Cross mothod, the relative stiffness of the members is of
importance and not the absolute valus. The foregoing def-
inition was selected so that the stiffness of a member of
constant cross section_with no axial load and fixed at '
the far end would be EI/I instead of 4EI/L.

Carry-Over Factor

If a member is on unyilelding supports at each end and
a moment is applied at the near end, the ratio of the mo-
ment developed at the far end %6 the moment applied at the
near end is called the "carry-over factor." 4s in the
case of stiffness, the carry-over factor will depend upon
the degree of restraint at the far end of the member, The
symbols used to designate the carry-over factor for the
different %types of restraint are:? -

G, far end fixed.
Ct, far end eslastically restrainsed.

C* = 0, far end pinnsed.
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Sign Convention

The sign conventlon used in this report 1s the same
as that used in references 1, 2, and 4. 4 clockwise mo-
ment acting on the end of a member ig pvosgitive. A coun-
terclockwige noment acting on a joint is positive, An ox-
ternal moment applled at a joint 1s considered to act on
the Joint. A positive moment. acting on the end of a mem—
ber causes posltive rotation of that end. : '

Symbolse

E, modulus of elasticity.

ﬁ, effective modulue of elastlcity.

I, moment of inertia of cross sectlon of member
about a centroldal axis normal to the plane
of bending. '

L, length of member.

W, total load on the structure.

P, axial load in member (aﬁsolute value).

A, area of cross section.

¢y, restraint coefficient in the usual column formula.

k= % ) radius of gyration.

= EI

J = P

L = -....I.‘_....'

J EI
P

(&) i

Jers. EI . .
i3
. - B ,
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METHOD OF ESTIMATING THE CRITICAL LOAD

The method of estimating the lowest critical load is
based upon the principles discussed in referenceés 5 and 6
.for the analysis of experimental observations in prodleus
of elastic stability. In reference 5, Southwell mentions
that the unavoidable imperfections in practical structures
prevent the realization of the concept of a critical load
at which deflections begin. Instead, the initial deflec-
tions presgent in practical structures stsadily increase
with load and, according to the usual theory, the deflec~-
tions become infinite as the critical load is approached.

In references 5 and 6, the relation between load and
deflection for problems of elastic stadbility is also dis-
cussed. The more general relation given 1n reference 6

—

v
shows that, if E—-—EL is plotted as ordinate against
— 1 - -

Yy -y, =as abscissa, the curve obtained when P approaches
Pcrit is essgentially a straight line the inverse slope of

:which is .Pcrit'" P, , where

¥ 1is deflection at axial load P in a membgr.

y and P, initial values of y and P, respec-
i i tively.

Pcrit’ lowest critical load.

Pl < P< Pcri'b o . ) (1)

Thus,.if simultaneous readings of load and deflection re-
corded in a test are plotted as Jjust described beginning
with any load P, as the initial reading, the valus of

Popit = P, 1is readily obtained. The value of Poniy 18
then glven by the relation

Parit = (Pcrit - Pl).+ P, (2)
The relation between load and deflection can also be
applied to load and rotation of a joint. In order to usse

this relation in theoretical calculations, there must be
initial rotation of the joints. This rotation is obtained
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by a fictitious external moment M applied at some Jjoint,
after which the load on the structure is imagined to be
applied. The sffect of the tension in the tension members
is such as to reduce the rotations caused by the external
moment M; whereas the effect.of the compression in the
compresgion members is such as to increase -the rotatlons.
As the lowsst eritical load is approached, the offects of
compression completoly overshadow the effocts of tension
with the result that tho rotations become infinits.

If tho distribution of the total load W on the
‘structure does not change as W increases, then the axial
load in each member is pronortional to W. Thus, if
6 - 8
ﬁ':’ﬁl is plotted as ordinate ageinst € - 8§, as abscissa,

)
the curve obtained when W approaches Wenit 18 esson-

tially a straight line the inverse slope of which isg
Wcrit ~ W:' where

) ig rotation of a joint under the moment XN
at load W on the structure.

9, and W,, initial values of € and W, respectively.

Werits Llowest critical load.

and
W, < W< Wopsg ()

Thus, 1f simultaneous values of load and rotation are plot-
ted oes just desoribed beginning with Wl as the initial

load, the value of W,,.3y ~ Wy, 1s easily obtained. The
value of Wcrit ig then given by the eguation

wcrit = (Wcrit - Wl) + W, (4)

The procedure to be used in estimating the critical
load for a group of structural members is:

1. Agsume thres values of VW that are knowan to
be less than Wcrit' This condltlon 1s sgsatlsfied 1if

the values of W are selected soc that the axial load
in each compreseion member ig less than the strongth
of that membor with both ends pinned.
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2. GCalculate the rotation © of some Joint for
each of the assumed loads W Dby use of equations
glven later.

3., Designate the lowest assumed value of W
and the corresponding value of 8 as W, and 91,
respectively. '

6 - 8
4, Plot the curve of —— 1 as ordinate
¥ - W,

, as abscissa. The three assumed loads

will give two points on this curve, which are suffi-
cilent to establish an approximate value of Wini4 =~

W, and, hence, of Wgnitse In practical caleulations,
the actual plotting of the curve can be omitted be-
cause the inverse slope Won34 = Wl would always be

calculated from the numerical values used to plot the
curve. If more than three values of W are assumed,

however, it may be of interest actually to plot the
curve. -

againgt 6 - @

ROTATION OF A& JOINT

The rotation 6 of a2 joint is easily calculated by
the methods of moment distridbution. Either of two equa-—
tions may be used, according ito whether the stiffness or

the series criterion for stadility forms the dasis. (See
reference 1,)

Stiffness Criterion for Stability

Assume that an external moment M is applied &t Joint
b in figure 1. The moment ~M added to balance this
Joint is distributed among the members as follows:

M S

bc1 .
~ E—ET;;_ to member bc1
e 'bca % b b
- —— 0 member c
t a
8 be

etc.
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The moment distridbution analysie ie now complets as far as
moments at joint b are concerned. (See corresponding
discussion in reference 1l.)

{3 c2
/
/
A B
Qgib_ — - } M, extornal moment
S
N

N
\ c3
®

Filgure 1

According to the definition of stiffness, the moment
distributed %o any member must be the rotation of the joint
multiplied by the stiffness of the member. Hence,

- =M iy the rotation in guarter-radlans of Joint b
ISy, -

caused by the external moment M. For the purpose of os-

timating ceritical loads, ¥ can have.any finite value.

For the most convenlent value, M = ~ 1, the rotation 8

is, in quartér-radians, '

-

6 = —_— * (5)
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For stgbility, the moment in the members and the ro-
tation of the Jjoints must be finlte., The stiffness cri-
terion for stability is therefore (reference 1)

T 81y, >0 (6)

The conditlon of neutral stablility zives the critical
buckling load for the structure and is obtained by setting
the stiffness stability factor IS'y, equal %o zero, or

£ 8ty =0 (7)

Formulas (8) and (7) are also derived in reference 1.
The critical load for the struciture 1is odtained by testing
equation (7) for different assumed critical loads; fhe low=
est assumed critical load that just satisfies equation (7)
is the critical load desired. If the applied load is less
than this lowest eritical load, the structure is stables
if not, the structure is unsitable. The method of estimat-
ing the critical load ig therefore a tool %o 2id in find-
ing the lowest critical load that will satisfy equation (7).

Series Criterion for Stability

Assume that an extsrnal moment M 1is applied at joint
b in filgure 2. TFrom the corresponding analysis in refer-
ence 1, it follows that the total moment in members’  bdba at
Joint b is '

ba ( 2 3
- = I+ 24+ r®+ 23+ saua)
Spe + L S'yg -
or
~MZS'ba‘ 1 i
Spe T bX S!ba 1 -1
whers
r o= e One -§pb Sen _ 18)
Sbc + Z S'ba S&@'+ hH Slcd
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\\\L;g M, external moment
7

Pigure 2

According to the definition of stiffness, the total
moment in members ba at joint b must be the rotation
of Joeint D multiplied by the total stiffness of members
ba. Hencs,

M 1
Spe * Z8Tpy 1 =1

L

is the rotation in quarter-radians of joint Db caused by
the external moment M. For the purpose of estimating
critical loads, M can have any finite value. For the
most convenient value, M = -~ 1, the rotation 6 is, in
quarter~radlans,

1 1

For stability, the moment ln the members and the row-
tation of the Joints must be finite. As stated in refer-
ence 1, the series criterion for stability is thorefore

r <1 (10)

The condition of neutral stability gives the critical
buckling load for the structure and is odbtained by setting
the series stabllity factor r egqgual to unity, or

r =1 (11)
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Formulas (10) and (11) are also derived in references
1, These expressiong are sometimes more convenient to use
than the corresponding formulas (6) and (7). In cases
when the structure is symmetrical about a Jjoint, the ex-
pressions concerned with the stiffnegs criterion usually
involve fewer calculations. When the structure is symmet-
rical about a member, the formulas concerned with the se-
ries criterion offer certain advantages. Experience in
the solution of practical problems will dictate which ex-
prossions result in fewer calculations. In any case, ei-
ther set is correct and the method of estimating the crit-
fical load is & tool to aid in finding the lowest critical
load that will satisfy the egquation for neutral stadbility,
either equation (7) or equation (11).

CARRY-OVER FACTOR AND STIFFNESS

In order to check the stability of a group of struce—
tural members by use of the previously given formulas,
additional equations for the carry-over factor and the
stiffness are required.

Figure 3
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Consider the member iJ - shown. in flgure 3, simply
supported at 1 and elestically restrained at J by mens
bers - jk. The members Jk are also elastically restrained
at ‘thelr far ends k. By a moment-distribution analysis
given in reference 1, the carry-over factor G'ij is

T st
Jk '
G = (12)
i i
J Js*'ji—x-ZS'Jk
and the stiffness S'ij is
S"
13
St = (13)
i -
J 1 Gji 0'15
Substitution of equation (12) in (13) gives
s
ij
1 =
S'1 Z 8 (24)

] C Jk
1 =031 %35 5 7 T 87
Ji J

k

For member 1j, the limiting values of the carry-over
factor and the stiffness given by equations (12) and (14),
respectively, are obtained as follows. When the far end
J is pinned, there is no elastic restraint at J and
ZS‘Jk = 0., For this limiting condition, the carry-over fctor

far end J 1is fixed, there is complete restraint at J
and ZS’Jk = o, For this limiting condition, the cerry-

over fector C'ij = Gij and the stiffness S'ij = Sij,
where

S" .

Up to this point, all the equations in this report on
stabllity are general. In nearly all of the cases encoun=
tered in practice, however, the cross section and the axlal
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load do not vary along the length of esach member. TFor
this special case, 034 = O35, S"3; = S";3, and "534 =
Sjl- In practical proolems,_the numerical values for.
these quantities are obtained by use of the tables glven

in reference 2. ) DR

PROBLEMS

The purpose of including problems 1s to demonstrate
the previously described method of estimating critical
loads. BSix simple problems have been selected to reveal
certain characteristics of the method that should be known
by the practical engineer using it. In order to show the
accuracy of the estimated critical load, the correct wvalue
of the critical load for each problem is first established.

The tables of reference 2 were used in the numerical
evaluation of the stiffness and the carry-over factor. Al-
though interpolation in these tables is unnecessary for
the solution of practical problems, interpolation was used
for the solution cf these problems to show clearly how the
estimated ceritical load becomes more accurate as the as-
sumed loads W and W, approach W, ,.;y4-

In problems 1 to 4, it is assumed that the members
are subjected to low stresses corresponding to the elastic
range where the effective modulus E 1is equal to Young's
modulus E. In problems 5 and 6, the compression members
are loaded above the elastic range where E < E. In other
words, for problems 1 to 4, the compression members lie in
the long~column range; whereas, inh problems 5 and 6, the
compression members lie in the shorit-column range. '

Problem 1

Problems: To calculate the ecritical load for the pin-
end strut shown in figure 4.

Compression P

EI = 10,000 1b,. in,.2

< ‘L = 100 in, ————3

Figure 4, - Problem 1.
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The squations concerned with the gtiffness criterion
for stability are used in the solution of thisg prodlen,
Imagine the external moment M +to be applied at Jolnt ©b.
The correct value of the ceritlcal load 1s therefore the
lowest assumed load that will satiesfy equation (7). There
being only one member be, the summation sign is omitted.
Beceuge this member ©be 1is pinned at the far end .c, the
single prime on Sy, 1is replaced by a double prime. Thus

for this problem, equation (7?) becomes

§"ye = O o (18)

For member be

EI

10,000 1b. in.2
L

100 in.

Conseguently,

\
B

F

.

From the tables of reference 2, it is found ﬁhat the small-
et value of P to satigfy equation (16) 1s the value of

P giving L/j = m. Therefore the correct critical load

is

Pcri'b =72 = 9,87 1b, -
which agrees with the vaelue given dy the well~kﬁoWn Euler
column formula

2RI
Poriy = T3 (17)

The estimated value of the critical load is given by
the inverse slope of the approximately straight line ob-

‘tained by plotting = 1 as ordinate against 6 - 6 as

abscigsa, For this problem, W = P and equation (5) be-
comss

6 = 1 (18)
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The values of 6 are given in table I for a series of

6 - 8

assumed loads P; and values of 8 - 8, and 5———§i are
- . . . 8 - 1

given for P, = 0, 3, and 7 pounds. Table I was made exX-

tensive 1in order %o show how the estimated critical load
is affected by P, as well as by the values of P at

which the inverse slope 1is computed.

The approximately stralght lines that correspond to
P, = 0, 3, and 7 pounds are plotted in figure 5. Inspsec~

tion shows the lines corresponding to P, =0 and P, =
3 pounds to be essentially straight. As only two points
establish the line for P, = 7 pounds, no concluslon re-

gardling ite straightness is Justlified.-

If P, = 0, +then the inverse slope between P =1
and P = 2 pounds ls (see table I}

_ 0.002202 - 0.00053%

P - P = = 10.33 1b.
erlt 1 0.001101 ~ 0.000983

from which

Popit = (Popgy = Py) + P, = 10,33 + 0 = 10,33 1b.

The results of a number of calculations of this type
for other values of P and E& are given in tadle 1II.

Inspection of this %able shows that, for any value of P1'

the estimated critical load becomes more accurate as the
values of P ©Dbeitween which the inverse slepe iIs calcu- |
lated approach Pgr3s. The accuracy is also increased es

P, approaches Pgpit. -

k-

Problems 2, 3, and 4

The purpose of problems 2, 3, and 4 1s to study the
effect of the tension in tension members on the estimated
eritical load for a structure. In these problems, end D
of the strut used 1in problem 1 is restrained against rota-
tion. by the adjescent member. ba, which 1s the same size
as member be., (See fig. 6.) In problem 2, member bha _ _
has zero axial load. In problems 3 and 4, there is axial
tension in ba of magnitude P and 3P, respeciively.

In each problem, the commression in member be is of mag-
nitude P,
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Problem Member ba Member be
2 Zoro axial load Compressionw P
3 Tension P Compression P
4 Tension 3P ~ Compression P
£I = 10,000 1b.in.% BI = 10,000 1lb.in.?
\ AN
& i b c

L = 100 ino

v
— K

Figure 6., - Problems 2, 3, and 4.

Imagine the external moment M +to be applied at
joint b. The correct value of the critical load is the
lowest assumed load that will satisfy equation (7) which
becomes, for prodblemsg 2, 3, and 4, : .

+ 8", . =0 (19)

1
5 ba
For each of members ba and be. in prodblems 2, 3,
and 4,

2

BI 10,000 1b, in.

il

L 100 in,.

On calculation of the values of L/j for each span in each
of the problems, it ia found by trial that the lowest wvalue
of P satisfying equation (19), or P,nigs 1is

Parig (1vs)

Problem
2 13.89
3 15.41
4 16.93

The ostimated valus of—the critical load is given by
the inverse slope of the approximately stralght line ob-
6 ~ © : '
tained by plotting 5‘:*§A as ordinate against -0 - O,
. N - SR
as abscissa. PFor problems 2, 3, and 4, equation (5) be~
comes '
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8= 1 . (20)

1
Stpa ¥ 510

In tables III, IV, and V, the assumed values of P
and the corresponding values of 6 are given for problems
2, 3, and 4, respectively. The curves established by the
data in these tables are plotted in figures 7, 8, and 9,
respectively. A gummary of the corresponding estimated
ecritical loads for each problem is given in tables VI VII
and VIII, - :

In figure 7, the curve for P, =0 is noticeably con=-

cave upward; whereas, in figures 8 and 9, this éurve is def-
initely concave downward. This change from concave upward
to concave downward is caused by the tension in member Dba,
which results in an overestimation of the critical load
when the tension in member ba is zero but an underestima~
tion when the tension is equal to P and 3P, (See tables
VI, VII, and VIII.) These same conclusions hold in & lesser
degree when 0 < P, < Pgpige

When the method of estimating critical loads is applied
in the solution of practical problems, it is desiradle to
know whether the true eritical load is overestimated or un-
derestimated. From problems 1 and 2 it is concluded that,
in the absence of tension members, the estimated critical
loads are all greater than the true critical load. (See
tables II and VI.) From problems 3 and 4 it 1s concluded
that, in the presence of tension members, the estimated
eritical loads are all less than the true ceritical load.
(See tables -VII and VIII.) The region within which all es-
timated critical loads are in good agreement with the trus
critical load cannot be definitely established in the gen-
eral case,

Qualitatively, the region of transition from over-
estimating to underestimating the critical load can be es-
tablished by noting the trends in problems 2, 3, and 4.

In problem 2, the poorest estimate of the eritical load
(small Values of P and P,) is 12.8 percent on the unsafe
side. In problems 3 and 4, the poorest estimates are 69.6
and 122,7 percent, respectively, on the safe side. In
problem 2, no tension member is present. In problem 3, the
size, the axial load, and the number of the tension members
are the same as for the compression members. In préblem 4,
the axial load in the tension member isg three times the

~
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axial load in the compression member. It is therefore
concluded that the transltion from overestimating to under-
estimating the critical load will occur when the size, the
axigl load, or the number of the tension members is ampll
relative to the compression members. :

When all members in a given problem are compression
memberg or when the effects of tension are neglected in
the calculation, as ig sometimes done 1an setadbility prodb-
lems of this type, the agreement of the estimated critical
load with the calculated critical load will be ag good ‘as
that found in problems 1 and 2. When the effect of. ten-

- sion in tension members is considered, the precigion of
. the -estimated critical load can be determined qualitatlve-
ly by reference to prodlems 2, 3, and 4.

Ag in the case of problem 1, the agreement of the es-
. timated critical load with the calculated critical load
for prodlems 2, 3, and 4 becomes closer as -the values of
P between which the inverse slope is calculated, approach
Pcrit‘ The precision also increases as P approaches

1
Pepite (See tadles VI, VII, and VIII.)
TEE EFFECTIVE MODULUS

Before the theory of thts report can be applied to
problems involving compression members that are stressed
beyond the elastic range, as in problems 5 and 6, it is
necessary to introduce an effective modulus E so de-

- 8igned that the results will be in good agreement wilith tho
accepted column formulas.

Compression Members

Most engineers are familiar with the origin of the
accepted column curve for a given materiasl. At low
gtrosses (stresses less than about one-half the yleld
point of the material), the column strength is given by
the Buler formula. At high stresses, lahoratory tests
always show that the column strength falls short of the
value glven by the. Buler formula. An empirical straight
line or & parabolic curve is sometimes used to give the
column strength within this rancge. '
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The theory of this report gives a buckling load that
is analogous %o the strength given by the Euler column
formule. As in the case of the EBuler formula, these loads
would not check experimental values at high stresses. 4
reduced strength must therefore be calculated consistent
with the accepted column formula for the material of which
the members are composed. Thesse calculations are best made
by use of the effsctive modulus E = TE.

Consider the case of an ordinary column, If the Euler
formula is written

818
2o T TR (21)
A ( I ) . .
V¢ p
it will give the strength at both low and high stresses.
At low stresses, 7T = 1; whereas, at high stresses, T < 1.

The problem ig +to determine how the effective modulus TH
varies with the stress P/A. SR

If equation (21) is solved for TE, the following
equation is obtalined

a2
-1 P11 E) 22
re=2 22 (22)

The accepted column Fformula for any material is always
given in terms of the effective slenderness ratio

(L/ /T p). 'Thus, if any one of these formulas is solved
for (L/JC p) and this value is substituted into equa-

tion (22), there results an equation for the effective
modulus TE that is a function of the stress P/A.

"For example, consider the case of S.A.E. 1025 steel.
The column formulas for this material are:

R

For < 18,000 1b. per sg. in.

= (23)
; (ﬁ S
For 36,000 > A > 18,000 1b, per sq. in.,

2 _ 56 600 - L (LY ' '
£ = 36,000 = 1.172 L (5) (24)

By Pl
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If equations (23) and (24) are solved for (L/VY ¢ p) and
these values are substituted into equation (22), the folw-
lowlng values are obtained for the effective modulus E =
TR . : . . s : :

For < 18,000 1b. per sq. in.,

Pl

= TE = B ' | ' (25)

=]

For 36,000 > § > 18,000 1b, per sq. in.,

P }
- 36,000 - =
EatE=%~2Z A (26)
73 A 1.172

Equation (25) shows that, in' the long-column or elag-
tic range, E = E. Equation (26) shows that, in the short-
- column range, E is a function of the stress P/A in the
member and is in no way dependent upon the stiffness or end
£ixity of the member.

n

When the compression members of the structure are
stregssed beyond the elastic range, the methods outlined in
this report can also be used to calculate the critical
load. The procedure is the same as in problems 1 to 4 ex-—
cept that, for each assumed load W on the gtructure,
there 1s a different value of the effectlive modulus E.
These values of E are obtained by use of equations (25)
and (26) if the material is S.A.Z. 1025 steel. TFor any
other material, corresponding equations can be derived.

Tenslon Members

When the effect of axial load in the tension members
l1s considered, the variation of E with stress for ton-
sion members can be established, theoretically, by the use
of the double~modulusg theory of bonding and of the stregg-
strain curve of the material. TFor such calculatlons, how=
ever, the stress-straln curve must be accurately drawn %o
a sultable scals. In the absencc of & known or a calcu-
lated variation of E with stress, the_following approx-
imate method can be used to establish E for tension mem—
berss .

l. When the stress is less than-fhe meximum al-
lowed for a column of the same material, use the sgame
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values of ¥ for tension as for compression at the
same stress, Ca e

2., When the stress 1s greater than the maximum

‘allowed for a column of the same material, assume

that & = 0.

The values of E for tension members obtained by
this method will be conservative. Whether or not they ars
too conscrvative is a matter to be settled by tests. In
the regions of yield point and of maximum tensile strength,
the flatness of the stress-strain curve will certainly
cause E +to approach zero. Bscause the maXimum stress al-
lowed in columnsg is closely associated with the yleld
point, this method offers a convenient solution of E for
tengion membders., T -

Problems 5 and 6

The purpose of problems 5 and 6 is to show that the
method of estimating critical loads preéesémnted in this
paper gives good results when the compression members lile
within the short—column range. BExcept for the different
dimensions and the fact that the members with axial load
are stressed beyond tho elastic range, these problems are
similar %o problems 2 and 3, respectively.

Problen Member Do Member be
5 Zero axial lead '~ Compression P )
6 Tension P Compression P -
) t
< L = 60 in, . L = 50 in. J For problem 5
< L = 50 in, - L = 50 in. For problem 6

Material: S,A.E. 1025 steel tube continuous from a %o
¢ with the following dimensions:

Diameter, 4 1.625 in. .
Wall thickness, % 065 1in,
Area, A ,3186 gq. in,
Moment of inertia, I +0970 in.4

Figures 10, =~ Problems 5 and 6.
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The essential dimensions for problems 5 and 8 are
glven in figure 10, The effective modulus 1 for any
member is & function of the stress P/A in that membor,
The numerical value of ¥ for any assumed load P is
thorefore given by equatione (25) and (26), the material
being S.A.E. 1025 steel, By the same methods as used in
the solution of probleme 2 and 3, it ig found that the
lowest value of P to satisfy equation (19), or Porits

is

P
Problem cerit(in,)
5 9,420
6 9,510

The necessary calculations for egtimating the critical
loads for problems 5 and 6 were made by the same nmeothods
used for problems 2 and 3 excopt that in the calculation
of the stiffness of the members the effectlive nodulus
was used in place of Young'!s modulus E, The regults of
these calculations are given in tables IX to XIV,

- 8
In figures 11 and 12, ;L——El- is plotted against
I |
8 - 6, for problems 5 and 6. It is preferable, however,
to compare the results given in tables XI and XIV rather
than to draw conclusions from figures 11 and 12,

In problem 5, the axial load in member ba is zero;
whereasg, Iin problem 6, member ba is subjected to axial
tension equal to the axial compression of member bc,
Comparison of the estimated critical loads for each of
these problems (tables XI and XIV) shows that the ecriticel
load 1s usually, dut not always, overestimated when iho
tenslon in member ba i1g zerc and is usually, but not alw
ways, underestimated when the tension in member ba 1is
egual to the compression in member be. These same concluw
sions were found for problemsg 2 and 3. '

Comparigson of the precilsion of the estimated criticel
loads for problems 5 and 6 (tables XI and XIV, respective-
1y) with the vprecision of the estimated critical loads for
problems 2 and 3 (tables VI and VII, respectively) is not
Justified. ¥For problems 2 and 3, the series of estimatod
critical loads are based upon values of P taken at intor~
vals of roughly 10 percent of P,ypits whoreas, for prodlems

5 and 6, this interval was not maintained. When the members
1ie in the short-column range, an estimated critical load
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based upon small values of P, which 1lie in the elastic
range, gives an estimated critical load much bigher than
the true critical load. ©Consequently, in prodlems 5 and

6, the assumed values of P for which the estimated crit-
ical load was obtained were mads to corqespond to wvalues of
P/A that are essociated with the short~volumn range.

In the solution of any problem, it 1s necessary only
that the assumed loads be less than the true critical load,.
As the assumed loads approach the trué critical load, the
precision of the estimated critical load is increascd.

(See tables XI and XIV.) It is thercfore desirable %o oxw
ercise the best judgment possible in the selection of the
assumed loads.. In any case, however, the method of osbti-
mating the critical load as doscribed in this paper: should
be rogarded as & tool %o be used in finding the lowest
critical load that will satisfy the equation for meutral
stability. If it is doeszired that the estimatod ecritical
load be conservative rather than err on the unsafe side, the
offect of the axial load in the tension members should be
considered in the calcialation. '

CONCLUS IONS

le If the distribution of the total load W on the
structure does not change as W increases, then the axlal
load in each member is proportional to W. Thus, if
8~ 6 :
ﬁ~—~ﬁi is plotted as ordinate against O - 81 as absciss
- W, .

the curve obtained when W approaches Wgngg . 1s essential—

ly o straight line the inverse slope of which is Wgopig =
Wl, whers

€ is the rotation of a joint under tho moment N
at load W on the structure.

@, and W, initial values of § and W, respec~
tively.

Wopits lowest critical load.
and

V,<¥ < Weorit
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Thus, if simultaneous values of load and rotation are plot=-
ted as just described beginning with W; as the initiel

load, the value of Wgpsg - W, 1is easily obtained. The
value of Wypiy 18 then given by the equation

Wcrit = <Wcrit = Wl) + Wl

. 2« The rotation & of a joint can be calculated by
.the methods of moment distribution. The equation to be
uged deponds on whether the stiffness ot the serles crite-
rion for stabillity forme the basis of the calculation

3¢ For loads within the elasgtic range, the estimated
critical load more closely agreeg with the cglculated crit-
ical load as the values of W Dbetwcen which the inverse
slope is calculated approach W;p.34. The agreement 1is

also closor as W, approaches Wgpigs
4+ TFor loads beyond the elastlc range, the resulis of
conmputation have shown that conclusion 3 usually, dbut not
always, applies. In cases where it does not apply, tho
errors are of the order of a fraction of 1 percent. For
practical design calculations, conclusion 3 therefore
holds for loads beyond the elastic range as well ag for
loads within the elastic rancze.

5, When all members in a given prodblem are compreg-—
sion members or when the effects of tension are neglectod,
as 1s sometimes done in pracsical caldulations, the calcu-
latod critical load is overestimated. When the effect of
. tension in the tension mombers is considered, however, the
caleulated critical load is undorestimated. The regilon
within which all estimated critical loads are in good agreoo-
ment with the caleulated critical load cannot be definitoly
established in the general c¢ase. The transition from over-
estimating to undorostimating the calculated critical load
tends to occur, however, whon the size, the axial load, or
the number of tension members is small relative to the com-
prosgion members. In many practical problems, tho preci-
sion with which the estimated critical load agrees with tho
calculatoed critical load can be qualitatively determined
by reforence to the problems of this report.

6. The mothod of estimating the eritical load should
always be regarded ag a tool to aid in finding the lowest
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load that satisfies the eguation for neutral stability.
Phis lowest load is the coleulated critical locad for ths
problemn, .

Langley Menmorial Aercnsutical Laboratory,
National Advisory Comnittee for Aeronautics,
Langley Field, Va., June 8, 1939,

REFERENCES

1., Lundquist, EBugene EB.: Stadllity of Structural Members
under 4xial Load. T.N. No, 617, N.A.C.A,.,, 1937,

2. " Lundquist, Eugene E,, and Kroll, W. D.: Tables of
Stiffness and Carry-Over Factor for Structural Mem-
bers under Axial Load. T.N. No. 652, NJ.AC.A.,
1938,

3. Oross, Hardy: Analysgsis of Continuous Frames by Disw-
tributing Fixed-End Moments. 4~A.B3.C.E., Trans.,
vol, 96, 1932, ppe. 1l=10. Discussion, pp. 111586,

4, James, Benjamin Wylie: Principal Effects of Axial
Load on Moment~Distribution Analysis of Rigid
Structures. T.N. No, 534, N.A.C.A,, 1935,

5¢ Southwell, R. V.: On the Analysis of Experimental
Obgervations in Problems of Blastic Stability.
Proc. Roy. Soc. (London), ser. A, vol. 135, 1932,
PPe. 601l-=616,

6. Lundquist, Bugene E.: Generalized Analysis of Experi-
mental Observations in Problems of Elagtic Sta-
bility. T.N. No. 658, N.A.C.A., 1538,



TABLE T™

TABLE L
. Caleulated Data for Problem 3
Coleulated Dalo. for Problem 1
a0 P32 w F- 7h T Reo TR - aB b Peng ik
p P O, = 0012388 9 -0.017070 e, -n-o.'a-'ll-t._s___1 P N B, = 0.0064657 6, - 0.006%091 8, =0.009%641
8-8 |9-9 | eg-o | 98 | -0 | 8-9 ' g-0, | 3°% | g.p | .B-8 -8, | 228,
U) | Eo5)] o) Ffan) contin] oy | oo R ‘PR e | P | e
* 1 ) AWMLY ' & it (o) | eton) raston) o) o) () (cadion rada
[+} 0.0)3333 [} [1] 4 A- 4 “3, 4’ 4|b- 4 4 “J-
t oMt | .000983] .o00983 0 0,0046067 0
2 015535 | 002202 ,00lj0l10 l.b 0066999 | 000032k [0.000D203
.3 .011090 | .003757 | 0Gi1as2s |0 : 5.2 | .00uBOZ3 | .a001s36 | 000D
4 .01%153 | 003820 0014550 .002043| 0.00%063 43 0067891 | .0003324] .00006TI47) O
5 .0220% | ,008702 | 0011406 | .004946( 002472 bA | 0072702 |, pookrai| ocoo ,00030)| [0.000188 1%
b 02639 | 013026 | 0021727 | 0092719 | 003093 8.0 A0TTbbA- | .0010997 | 00013746 | 00077173 | .0DOZAA
T (0836bB | L020385].0025050] .0163TR .muﬂqo 9.6 |,p085470 | .cO18803 | .000i9508| 00i551T | 000>
a L048467 | 035336 |. 0044170 031577 | 00LHISE] .0/3001)0./500] HZ 1009764l | 0032974 |, 00029441] 0029750 LOOALABY G
9 077182 | 084447 | 0094054 080077 | 012452, | 064214 | G30ST 128 |,0u5164 | .0004917|.000507T .006ITTS | 0OOTIAIM| 0082023 00020014
44 |.026315 |,019648 |.0013785 | 01526 | .0080239( 016551 | .0051720
TABLE TIL TABLE ¥
of
Colculoted Data for Problem 2 Caleulated Dala for Problem 4
P 0 P= 4.2 b. P=4q,8 b E =0 B =&l b Frila kb
©, 0. 00lble? 9,20.0079424 €, 0.0i818] p 8 0, = 0.006b6 AT §, » 0,005e0844 8, = 0. Q04033
P e - o-8, - 58-89 - o-8 o- 2-6 -8 | 8-9 - .8:8
o8 [ |07 | Fe | R | T R N Il B =l IO e
dian) |{radian (:ud.nn) i) |/ reian Qm.dlnn) @'@ﬂn) em.d.lm) .m.d.nm) )mﬂ;ﬂ% ion
(1b) ( o ) 41b, (md‘.}m)( 4-Ib.) 4 (mfjlt.n) (1b) 4 F‘i““) 416, ( ) (uﬂ%n( 1 1b,
o 0,006a84T7] 0 . 0 0.00bbeeY| 0
4 | .00700T]| .0003410]0,00024557 L1 00635 |.0005312 [-0.00002474
[ .S 0074229| 0007563 | D008 7007 34 005825~ 0008436 -, 00024812
42 0077434| oo 1l? [.00030398|0 a1 LOUS -.000T6%3 [-.0001826! |0
56 0086315 | . 0011546 | .00034904] . 0O0GTIY [A.00CABAL 6.8 |.0055u8¢é |- 000998! {-.00D146T8|- ,boc0.sE |o.sd000n
10 2015509 | 0028042 .00041203] .0016075 | .0005M1L 8.5 0057820 |-,0008847]-,00010408( ,c00007e| HOUOZBME
84 \01092] 0042544 .00030 D029177 | .OU0TOBTS 0.z O0e0Tel [~.0003%08|-.00005750 | , 000317 | .0000TLERY
9,5 013181 | .0065146 | 00064 00TLIM | 00073534 0 1 ].0067033 | .0000366] c000e30n] 0010187 | COBKRIEE|O
e OITNS |.01j048 |,00070644 ,00T77I7 | 003140 | 0045338 [0.0032304 Wb |.00TIB34] 0015167 | .0oc0ysaz | ,00nat10 | 000LTOAT] 0012801 |0.0007850
120 031927 | .0252b0/|.0020048| 023784 |, 0028352] 018744 \-muso 133 |.013765 | 0070977 | guoacstz [ Ooovasa | 00079218 | 0070012 |.00R076Y
- -

4L CON BI0K TROTURORL ‘¥°O'Y'K

£'%'2T TRy




TABLE II
Summary of Estimated Critical Loads

for Problem 1

{Porit (theoretical) = 9.87 1b. ]

Yalues of P

P 8102:t¥:e§éggi§§ted Porit (éstimated)| Ponyy (estimated) )
= P..:. (theoretical
(1v.) (1b.) (11.) crit
1l and 2 10.33 1.047
o] 4 and 5 10,10 ) 1.023
8 and 9 2.89 1.002
4 and 5 10.03 1,016
3

8 and 9 9.88 1,001

7 8 and 9 9.87 1.000




Summary

TABLE ML

for Frablem 2

of Estimated Critical Loads

[ Porit {theoretical) ~ 13.84 b1

TABLE ¥IIL

Summurg of Eelimafed Critical Loads
for Problem 4

Values of P
P, between wﬁt:l:hd l’,:ﬁt(ﬁ’nd;ul"_wi.\‘%‘;@f‘%h:j]
slope Is calcu Porit (Hheanti
(1b) {ib) ()
L4 and 2.8 15.47 1128
a 56 and 1.0 4.7 1.063
1L2 _and 12.6 13.96 1.008
N 56 and T0 14.54 1,047
2 L and 126 13.94 " 1,004
9.4 1.2 and 126 3.9 . 1,001
TABLE T

Summary of Esfimdled Critical Loads
for Problem 3

[ Post Ltheartical) = 15.4 1b. ]

[ Pyryt (thesretical) = .93 16.]
Values of P
P | between which %.if(&fmfd)-i“ ‘:"b“":;d)
slope I3 calevln it
() [ b ) ¥
1.7 and 34 -3.84 -0.227
0 6.6 and 6.5 [ XT3 57
13.6 and 153 15.75 430
8 and 85 6.08 oAM
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e | 13.6 and 15.3 16,37 0.961
TABLE XL

Summary of Estimofed Critical Loads
for Problem 3§

[ Pepyp Gheoretical) = 9azo0 1b, ]

Values of P
P |petween whicr P,if(tahmqh;" (‘*‘"ﬁd‘ﬂn

i loted e

(i) |slope '_’(ﬁb' o by |t
Lo and 3.2 4. .0 0,304
o 6.4 and 8.0 .89 LT
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’ 128 and 14.4 15.38 396
0.2 1£.8 ond 144 15.44 |.000

Values of ¢
R |between which | 2 (estiomatedy et (estimatec)
slope ia calovlathed it (theorticed)
(i) (1b.) ()
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0 |10092 and Teded] 1T9L0 f.0549
62836 and 632081  qeott 1,019
00%.2 . Zbs,2 a8%
57248 tf and To46.4| %
§2836 and 87208 95585 Lo14
:;%.4 82026 and §920.8 i i5e5.8 Lus
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Stiffness Values for Froblem & Stiffness Values for Problem 6
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TABLE XIV

Summary of Estimated Oritical Leads

f

or Problem 6

[Perit (theoretical) = 9,510 1b. ]

Values of P
B ||  Zebyeen wnich  |Popyy (sstimates)| Popyy (estimtod
P .. theoretical
(1b.) (1b.) (1B ) orit )
5,734.8 and 6,372.0 7,715.,2 0.811
0 7,009.2 and 7,646.4 8,546,1 «899
8,283.6 and 8,920.8 9,442.6 « 983
7,008,2 ond 7,646.4 8,761,5 .921
5,734,8|
8,283.,6 and 8,920.8 9,532,.,4 1,002
7,646.418,283.6 and 8,920,8 9,673.6 1.007
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